首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   5篇
化学   142篇
晶体学   1篇
力学   6篇
数学   11篇
物理学   53篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   7篇
  2013年   9篇
  2012年   6篇
  2011年   8篇
  2010年   10篇
  2009年   6篇
  2008年   11篇
  2007年   8篇
  2006年   4篇
  2005年   9篇
  2004年   14篇
  2003年   4篇
  2002年   2篇
  2001年   8篇
  2000年   12篇
  1999年   8篇
  1998年   1篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1983年   5篇
  1982年   6篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1971年   1篇
  1970年   2篇
  1887年   1篇
  1882年   1篇
排序方式: 共有213条查询结果,搜索用时 15 毫秒
51.
52.
53.
The radical copolymerization of vinylidene fluoride (VDF) and 1‐bromo‐2,2‐difluoroethylene (BDFE) in 1,1,1,3,3‐pentafluorobutane solution at different monomer molar ratios (ranging from 96/4 to 25/75 mol %) and initiated by tert‐butylperoxypivalate (TBPPI, mainly) is presented. Poly(VDF‐co‐BDFE) copolymers of various aspects (from white powders to yellow viscous liquids) were produced depending on the copolymer compositions. The microstructures of the obtained copolymers were characterized by 19F and 1H NMR spectroscopy and by elementary analysis and these techniques enabled one to assess the contents of both comonomers in the produced copolymers. VDF was shown to be more incorporated in the copolymer than BDFE. From the extended Kelen and Tudos method, the kinetics of the radical copolymerization led to the determination of the reactivity ratios, ri, of both comonomers (rVDF = 1.20 ± 0.50 and rBDFE = 0.40 ± 0.15 at 75 °C) showing that VDF is more reactive than BDFE. Alfrey‐Price's Q and e values of BDFE monomer were calculated to be 0.009 (from QVDF = 0.008) or 0.019 (from QVDF = 0.015) and +1.22 (vs. eVDF = 0.40) or +1.37 (vs. eVDF = 0.50), respectively, indicating that BDFE is an electron‐accepting monomer. Statistic cooligomers were produced with molar masses ranging from 1,800 to 5,500 g/mol (assessed by GPC with polystyrene standards). A further evidence of the successful copolymerization was shown by the selective reduction of bromine atoms in poly(VDF‐co‐BDFE) cooligomers that led to analog PVDF. The thermal properties of the poly(VDF‐co‐BDFE) cooligomers were also determined and those containing a high VDF amount exhibited a high thermal stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3964–3976, 2010.  相似文献   
54.
Halohydrin dehalogenases are promiscuous biocatalysts, which enable asymmetric ring opening reactions of epoxides with various anionic nucleophiles. However, despite the increasing interest in such asymmetric transformations, the substrate scope of G-type halohydrin dehalogenases toward cyclic epoxides has remained largely unexplored, even though this subfamily is the only one known to display activity with these sterically demanding substrates. Herein, we report on the exploration of the substrate scope of the two G-type halohydrin dehalogenases HheG and HheG2 and a newly identified, more thermostable member of the family, HheG3, with a variety of sterically demanding cyclic epoxides and anionic nucleophiles. This work shows that, in addition to azide and cyanide, these enzymes facilitate ring-opening reactions with cyanate, thiocyanate, formate, and nitrite, significantly expanding the known repertoire of accessible transformations.  相似文献   
55.
We compare the magnetic properties of two types of Co-doped ZnO films grown on sapphire with distinct structural quality. SQUID magnetometry as well as element-specific synchrotron studies reveal pure paramagnetic behavior for the samples with the highest structural quality, whereas samples with reduced structural quality exhibit superparamagnetic blocking behavior. In this sample signatures of phase separation are detected by X-ray diffraction and X-ray linear dichroism which accounts for the superparamagnetic blocking.  相似文献   
56.
57.
A new, convenient, and safe route to 1,3,5-triamino-1,3,5-trideoxy-cis-inositol (taci) was investigated by hydrogenation of azo-coupled derivatives of phloroglucinol. In the presence of acetic anhydride, the reduction of trisphenylazophloroglucinol (H2/Pd(5%) on C) resulted in the formation of tri-, hexa-, and nona-acetylated derivatives of triaminophloroglucinol. All three compounds are air-stable, colorless solids. However, the succeeding hydrogenation to the cyclohexane derivative failed. Trisodiumtris(p-sulfonatophenylazo)phloroglucinol could be hydrogenated in a one-pot reaction to the desired taci· 1.5H2SO4 using a Pt/Rh oxide as catalyst. taci provides two distinct chair conformations with either three amino or three hydroxy groups for metal binding. The unique metal-binding properties are discussed in terms of minimal conformational changes required for coordination. Conformational analysis, based on X-ray structural data of [BiCl6][H3(taci)] ·2 H2O (Pnma, a = 24.314 (5) Å, b = 10.215 (2) Å, c = 7.422 (8) Å, R = 5.8%) and [Co(taci)2(NO3)3]·2H2O (C2/c, a = 22.912 (8) Å, b = 8.942 (2) Å, c = 14.731 (3) Å, β = 128.66 (2)°, R = 4.9%) and the previously investigated [Cr(taci)2]3+ revealed an almost ideal chair conformation in all three molecules.  相似文献   
58.
The complex formation of vanadium(IV) with 1,3,5-triamino-1,3,5-trideoxy-cis-inositol (taci) and 1,3,5-trideoxy-1,3,5-tris(dimethylamino)-cis-inositol (tdci) was studied in aqueous solution and in the solid state. The formation constants of [V(IV)O(taci)](2+), [V(IV)O(tdci)](2+), and [V(IV)(tdci)(2)](4+) and of the deprotonation product [V(IV)(tdci)(2)H(-)(1)](3+) were determined (25 degrees C, 0.1 M KNO(3)). Cyclic voltammetry measurements established a reversible one-electron transfer for the [V(IV)(tdci)(2)H(-)(m)]((4)(-)(m))/[V(III)(tdci)(2)H(-)(n)]((3)(-)(n)) couple (0 相似文献   
59.
A liquid chromatographic method with inductively coupled plasma mass spectrometry is proposed for the speciation of butyl- (monobutyltin, dibutyltin, tributyltin) and phenyl- (monophenyltin, diphenyltin, triphenyltin) tin compounds in sediments. After evaluation of different additives in the mobile phase, the use of 0.075% (w/v) of tropolone and 0.1% (v/v) of triethylamine in a mobile phase of methanol-acetic acid-water (72.5:6:21.5) allowed the best chromatographic separation of the six compounds. Pressurized liquid extraction (PLE) with a methanolic mixture of 0.5 M acetic acid and 0.2% (w/v) of tropolone was suitable for the quantitative extraction of butyl- and phenyltin compounds with recovery values ranging from 72 to 102%. This analytical approach was compared to conventional solvent extraction methods making use of acids and/or organic solvent of medium polarity. The main advantages of PLE over conventional solvent extraction are: (i) the possibility to extract quantitatively DPhT and MPhT from sediments, which could not be done by a solvent extraction approach; (ii) to preserve the structural integrity of the organotin compounds; (iii) to reduce the extraction time from several hours in case of solvent extraction techniques to just 30 min. For spiked sediments, limits of detection ranged from 0.7 to 2 ng/g of tin according to the compound. The relative standard deviations were found to be between 8 and 15%. The developed analytical procedure was validated using a reference material and was applied to various environmental samples.  相似文献   
60.
The palladium-catalyzed substitution of alkyl 4,6-di-O-acetyl-α-d-erythro-hex-2-eno-pyranosides using NaN3 as the nucleophile gave predominantly the corresponding alkyl 2-azido-2,3,4-trideoxy-α-d-threo-hex-2-enopyranosides in the presence of Pd(PPh3)4. However, alkyl 6-O-acetyl-4-azido-2,3,4-trideoxy-α-d-erythro-hex-2-enopyranosides were obtained as the major products using Pd(PPh3)4 as the catalyst in the presence of dppb as the added ligand. Conversely, alkyl 6-O-(tert-butyldimethylsilyl)-4-O-methoxycarbonyl-2,3-dideoxy-α-d-hex-2-enopyranosides gave exclusively alkyl 4-azido-6-O-(tert-butyldimethylsilyl)-2,3,4-trideoxy-α-d-erythro-hex-2-enopyranosides in the presence of Pd2(dba)3/PPh3 as the catalyst and Me3SiN3 as the nucleophile. The bis-hydroxylation followed by hydrogenation of ethyl 4-azido-2,3,4-trideoxy-α-d-erythro-hex-2-enopyranoside afforded the corresponding 4-amino-α-d-mannopyranoside, when propyl 2-azido-2,3,4-trideoxy-α-d-threo-hex-3-enopyranoside gave the 2-amino-α-d-altropyranoside under the same conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号